Verteiltes Machine Learning: Klassifikation und Regression auf grossen Datenmengen

Martin Jaggi

ETH Zurich

ETH
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SPINNINGBYTES

monthly

Zürich Machine Learning and Data Science

Maschinelles Lernen?

(Vorhersage)
Klassifikation \& Regression

Maschinelles Lernen?

(Vorhersage)
Klassifikation \& Reg Sion

Klassifikation

Trainingsdaten

Klassifikation

Klassifikation

Computing Performance:

1950s: 10^{3} FLOPS
2010s: $10^{\mathbf{1 5}}$ FLOPS

Maschinelles Lernen?

Einige aktuelle Anwendungen / Big Data

Bild-Daten

\because Astronomie

* Gesichtserkennung
* 2D + 3D Medizin
\therefore (Hand)schrift-
Erkennung
: Bilderkennung

* self-driving cars

Bild-Daten

\therefore Astronomie

* Gesichtserkennung
$\because 2 \mathrm{D}+3 \mathrm{D}$ Medizin
* (Hand)schriftErkennung
* Bilderkennung
* self-driving cars

Bild-Daten

\therefore Astronomie

* Gesichtserkennung
$\because 2 \mathrm{D}+3 \mathrm{D}$ Medizin
\therefore (Hand)schrift-
Erkennung
* Bilderkennung
\% self-driving cars

Bild-Daten

\% Astronomie

* Gesichtserkennung
$\because 2 \mathrm{D}+3 \mathrm{D}$ Medizin
\because (Hand)schrift-
Erkennung
* Bilderkennung
\% self-driving cars

Bild-Daten

\& Astronomie

* Gesichtserkennung
$\because 2 \mathrm{D}+3 \mathrm{D}$ Medizin
\because (Hand)schriftErkennung
\% Bilderkennung
* self-driving cars

Pulp Magazine (83.01 \%)
how-old.net

Sea Snake (10.00 \%)

Paintbrush (4.68 \%)

Bild-Daten

\& Astronomie

* Gesichtserkennung
*2D + 3D Medizin
\therefore (Hand)schriftErkennung
* Bilderkennung
\% self-driving cars
how-old.net

Paintbrush (4.68 \%)

Text-Daten

- Spam
\% Internet-Daten
* Medizin:

Gendaten
negative neutral But i wanna wear my Concords tomorrow though but i don't positive neutral Gonna watch Grey's Anatomy all day today and tomorrow(: negative neutral neutral neutral neutral positive neutral positive negative negative positive neutral neutral neutral neutral neutral neutral neutral neutral neutral negative negative negative negative neutral neutral neutral positive positive positive @CoachVac heey do you know anything about UVA's fallll fe @DustyEf when that sun is high in that Texas sky, I'll be bu Up 20 points in my money league with Vernon Davis and L. DEEJ AYING this FRIDAY in THE FIRST CHOP it's CHRIS actue The Rick Santorum signing that was scheduled for tomorrow @dreami9 Iol yep looks like it! Was after El Clasico on Sund Back in Stoke on Trent for the 2nd time today!
First Girls Varsity Basketball Game tomorrow at 6:00 pm Th \#UFC lightweights @Young__Assassin VS @jamievarner set @OOOOO_WEEEE slide thru sometime this weekend ill have @DannyB618 Sure absolutely-- I meant out of the Bachman @RichardGordon48 re Levein discussion on Wed. Can't keep Today In History November 02, 1958 Elvis gave a party at h Hustle cause you got to then kick back n party everyday like I can't sleep. Way too exited about Vancouver tomorrow! I'r

Text-Daten

\% Spam

\% Internet-Daten

\% Medizin:
Gendaten
negative neutral But i wanna wear my Concords tomorrow though but i don't
positive neutral negative neutral neutral neutral neutral positive
neutral positive DEEJAYING this FRIDAY in THE FIRST CHOP its CHRIS actua
 Santorum signing that was scheduled for tomorrow 9 lol yep looks like it! Was after El Clasico on Sund toke on Trent for the 2 nd time today!
s Varsity Basketball Game tomorrow at 6:00 pm Th htweights @Young__Assassin VS @jamievarner set _WEEEE slide thru sometime this weekend ill have 3618 Sure absolutely-- I meant out of the Bachman dGordon48 re Levein discussion on Wed. Can't keep History November 02, 1958 Elvis gave a party at h use you got to then kick back n party everyday like eep. Way too exited about Vancouver tomorrow! I'r

Medizin: Analyse von Gen-Daten

Audio-Daten

: Hörgeräte
: Spracherkennung

* Automatische

Übersetzung

Audio-Daten

: Hörgeräte
: Spracherkennung
\% Automatische Übersetzung

Audio-Daten

: Hörgeräte
\% Spracherkennung
\% Automatische
Übersetzung

Audio-Daten

: Hörgeräte
\% Spracherkennung

* Automatische

Übersetzung

Numerische / Sensor-Daten

\% Cern (Higgs Teilchen)
: Fitness-Armband
\% Wetter-Vorhersage
\% Segeln
\% Robotik

Numerische / Sensor-Daten

\% Cern (Higgs Teilchen)
\% Fitness-Armband
\% Wetter-Vorhersage
\% Segeln
\% Robotik

Numerische / Sensor-Daten

\% Cern (Higgs Teilchen)
\because Fitness-Armband
\% Wetter-Vorhersage
\% Segeln
\% Robotik

Numerische / Sensor-Daten

* Cern (Higgs Teilchen)
\because Fitness-Armband
\% Wetter-Vorhersage
\% Segeln
\% Robotik

$$
13^{\circ} / 22^{\circ}
$$

$$
11^{\circ} / 24^{\circ}
$$

Numerische / Sensor-Daten

\% Cern (Higgs Teilchen)
\because Fitness-Armband

* Wetter-Vorhersage
: Segeln
\& Robotik

6

Internet-Daten

\% Werbung
\% Empfehlungssysteme

Internet-Daten

\therefore Werbung

* Empfehlungssysteme

WETFLIX

Internet-Daten

* Werbung
: Empfehlungssysteme
NETFLIX

amazon.com

$\begin{aligned} & \tilde{n} \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & \tilde{3} \\ & 0 \end{aligned}$	Movies				
		\star	$\star \star$		
			$\star \star$		
		*			
		$\star \star$		$\star \star$	
	$\begin{aligned} & \hline \star \star \\ & \star \star \\ & \hline \end{aligned}$				$\begin{gathered} \star \star \\ \star \end{gathered}$
			$\star \star$		
		$\star \star$		*	$\begin{gathered} \star \star \\ \star \end{gathered}$

Versicherungen \& Finanzwelt

\% Business-Analytics
\% Werbung
\% Kreditkarten-Betrug
\% Versicherungs-Risiko
\therefore Kundenbindung

Klassifikation

Klassifikation

Von Daten zu geometrischen Punkten

Von Daten zu geometrischen Punkten

Trainieren des Systems

Trainieren des Systems

Trainieren des Systems

Perzeptron

Trainieren des Systems

Perzeptron
(Rosenblatt 1957)

Trainieren des Systems

Perzeptron
(Rosenblatt 1957)

Trainieren des Systems

Trainieren des Systems

Trainieren des Systems

Trainieren des Systems

Perzeptron
 (Rosenblatt 1957)

Trainieren des Sys/ems

$$
\boldsymbol{w}:=\boldsymbol{w}+\lambda \cdot \boldsymbol{x}
$$

Support-Vektor-Maschine
 (Cortes \& Vapnik 1995)

Training Linear Classifiers

$$
\boldsymbol{x}_{i} \in \mathbb{R}^{d}
$$

Training data

Training Linear Classifiers

$\boldsymbol{x}_{i} \in \mathbb{R}^{d}$

Training Linear Classifiers

Optimization Algorithms

Optimization Algorithms

(Stochastic
Gradient
Descent)

Optimization Algorithms

(Stochastic Gradient Descent)
$\boldsymbol{w}:=\boldsymbol{w}+\gamma \boldsymbol{x}_{i}$

Distributed Optimization

Distributed Optimization

Distributed Optimization

$\boldsymbol{x}_{i} \in \mathbb{R}^{d}$

$\Delta \boldsymbol{w}^{(1)}:=\gamma \boldsymbol{x}_{i}$

$$
\Delta \boldsymbol{w}^{(5)}:=\gamma \boldsymbol{x}_{i}
$$

The Cost of Communication

$$
\boldsymbol{v} \in \mathbb{R}^{100}
$$

* Reading v from Memory (RAM)

$$
100 \mathrm{~ns}
$$

\because Sending \boldsymbol{v} to another Machine

$$
500 \prime 000 \mathrm{~ns}
$$

* One Typical Map-Reduce Iteration (Hadoop)

$$
10^{\prime} 0000^{\prime} 000^{\prime} 000 \mathrm{~ns}
$$

"Big Data Analytics" Applications

Classification

Support Vector Machine (SVM) (L1,L2)
Logistic Regression (L1,L2)
Structured Prediction (L1,L2)
Regression
Ridge Regression
Least Squares variants (L1,L2):
Lasso, Elastic-Net (Feature Selection, Compressed Sensing)

Distributed Optimization

Naive Distributed SGD

\# local datapoints read: T \# communications: T convergence:
"always communicate"

Communication: Always / Never

Naive Distributed SGD

```
# local datapoints read: T
#communications: T
convergence:
"always communicate"
```


Communication: Always / Never

Naive Distributed SGD

```
# local datapoints read: T
# communications: T
convergence:
"always communicate"
```


Communication: Always / Never

Communication: Always / Never

Naive Distributed SGD

```
# local datapoints read: T
# communications: T
convergence:
"always communicate"
```


One-Shot Averaged Distributed Optimization
\# local datapoints read: T \# communications: 1 convergence:

[^0]
One-Shot Averaging Does Not Work

One-Shot Averaged
Distributed Optimization

One-Shot Averaging Does Not Work

One-Shot Averaged
Distributed Optimization

Communication Efficient

Distributed Dual Coordinate Ascent

Communication Efficient

Distributed Dual Coordinate Ascent

Communication Efficient

Distributed Dual Coordinate Ascent

Communication Efficient

Distributed Dual Coordinate Ascent

Reduce

$$
\boldsymbol{w}:=\boldsymbol{w}+\frac{1}{K} \sum_{k} \Delta \boldsymbol{w}^{(k)}
$$

Communication Efficient

Distributed Dual Coordinate Ascent

repeat $\Delta \boldsymbol{w}^{(1)}$
Reduce

$$
\boldsymbol{w}:=\boldsymbol{w}+\frac{1}{K} \sum_{k} \Delta \boldsymbol{w}^{(k)}
$$ T times

\# local datapoints read: TH \# communications:

Experiments

Dataset	Training n	Features d	Sparsity	λ	Workers K
cov	522,911	54	22.22%	$1 e-6$	4
rcv1	677,399	47,236	0.16%	$1 e-6$	8
imagenet	32,751	160,000	100%	$1 e-5$	32

Applications:

dissolve ${ }^{\text {struct }}$

Open Source Library for
Large Scale Machine Learning
built on Spark

Open Source

Text

- Parsing
- POS tagging, chunking
- sentence alignment
- named entity recognition

Biology

Protein structure \&
function
prediction

Vision
Horse Segmentation, OCR

more?

- Scene understanding
- object localization \& recog:

Your Application?

Getting Started with Machine Learning

Does More Data Help?

\because scikit learn learn
\% kaggle.com kaggle

Thanks

"Communication-Efficient Distributed Dual Coordinate Ascent"

CoCoA paper (NIPS 2014)
 CoCoA+ paper (ICML 2015)

Spark' code is available on github
joint work with Virginia Smith, Martin Takáč, Chenxin Ma, Simone Forte, Tribhuvanesh Orekondy, Jonathan Terhorst, Sanjay Krishnan, Aurelien Lucchi,

Peter Richtarik, Thomas Hofmann, Michael I. Jordan

[^0]: "never communicate"

